7 research outputs found

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Connection utilization masking in ATM networks

    Get PDF
    A technique for connection utilization masking in ATM networks is presented, modeled, and analyzed. Specifically, a cell injection mechanism is modeled with a two-state Markov Modulated Poisson Process (MMPP) to study its autocorrelation and power spectral density properties and the queue response to the arrival process. The Cruz bound is used to determine injection source traffic parameters. Cell injection is implemented on a permanent virtual channel with a bursty Variable Bit Rate (VBR) source. The result is also VBR traffic having a new set of user-defined statistics. Traffic traces representing before and after injection scenarios are collected and further processed to define autocorrelation and power spectrum density functions. The results are used to compare and justify analytical results. The cell-injected stream shows strong correlation over a long duration, an indication of the removal of burstiness. Cell Transfer Delay, Cell Loss Rate, and Cell inter-arrival time statistics are collected to evaluate injection's effects on Quality of Service (QoS) parameters. Cell injection causes more mid- and high-frequency traffic power to be shifted towards low frequency region in the frequency spectrum, representing an increase in the mean arrival rate.http://www.archive.org/details/connectionutiliz00cayaFirst Lieutenant, Turkish ArmyApproved for public release; distribution is unlimited

    Textile Knitted Stretch Sensors for Wearable Health Monitoring: Design and Performance Evaluation

    No full text
    The advancement of smart textiles has led to significant interest in developing wearable textile sensors (WTS) and offering new modalities to sense vital signs and activity monitoring in daily life settings. For this, textile fabrication methods such as knitting, weaving, embroidery, and braiding offer promising pathways toward unobtrusive and seamless sensing for WTS applications. Specifically, the knitted sensor has a unique intermeshing loop structure which is currently used to monitor repetitive body movements such as breathing (microscale motion) and walking (macroscale motion). However, the practical sensing application of knit structure demands a comprehensive study of knit structures as a sensor. In this work, we present a detailed performance evaluation of six knitted sensors and sensing variation caused by design, sensor size, stretching percentages % (10, 15, 20, 25), cyclic stretching (1000), and external factors such as sweat (salt-fog test). We also present regulated respiration (inhale–exhale) testing data from 15 healthy human participants; the testing protocol includes three respiration rates; slow (10 breaths/min), normal (15 breaths/min), and fast (30 breaths/min). The test carried out with statistical analysis includes the breathing time and breathing rate variability. These testing results offer an empirically derived guideline for future WTS research, present aggregated information to understand the sensor behavior when it experiences a different range of motion, and highlight the constraints of the silver-based conductive yarn when exposed to the real environment
    corecore